The action of ten secreted aspartic proteases of pathogenic yeast Candida albicans on major human salivary antimicrobial peptide, histatin 5.
نویسندگان
چکیده
Candida albicans, belonging to the most common fungal pathogens of humans, exploits many virulence factors to infect the host, of which the most important is a family of ten secreted aspartic proteases (Saps) that cleave numerous peptides and proteins, often deregulating the host's biochemical homeostasis. It was recently shown that C. albicans cells can inactivate histatin5 (His5), a salivary histidine-rich anticandidal peptide, through the hydrolytic action of Saps. However, the current data on this subject are incomplete as only four out of ten Saps have been studied with respect to hydrolytic processing of His5 (Sap2, Sap5, Sap9-10). The aim of the study was to investigate the action of all Saps on His5 and to characterize this process in terms of peptide chemistry. It was shown that His5 was degraded by seven out of ten Saps (Sap1-4, Sap7-9) over a broad range of pH. The cleavage rate decreased in an order of Sap2>Sap9>Sap3>Sap7>Sap4>Sap1>Sap8. The degradation profiles for Sap2 and Sap9 were similar to those previously reported; however, in contrast to the previous study, Sap10 was shown to be unable to cleave His5. On a long-time scale, the peptide was completely degraded and lost its antimicrobial potential but after a short period of Sap treatment several shorter peptides (His1-13, His1-17, His1-21) that still decreased fungal survival were released. The results, presented hereby, provide extended characteristics of the action of C. albicans extracellular proteases on His5. Our study contribute to deepening the knowledge on the interactions between fungal pathogens and the human host.
منابع مشابه
Candida albicans Shed Msb2 and Host Mucins Affect the Candidacidal Activity of Salivary Hst 5.
Salivary Histatin 5 (Hst 5) is an antimicrobial peptide that exhibits potent antifungal activity towards Candida albicans, the causative agent of oral candidiasis. However, it exhibits limited activity in vivo, largely due to inactivation by salivary components of both host and pathogen origin. Proteins secreted by C. albicans during infection such as secreted aspartyl proteases (Saps) and shed...
متن کاملA Novel Immune Evasion Strategy of Candida albicans: Proteolytic Cleavage of a Salivary Antimicrobial Peptide
Oropharyngeal candidiasis is an opportunistic infection considered to be a harbinger of AIDS. The etiologic agent Candida albicans is a fungal species commonly colonizing human mucosal surfaces. However, under conditions of immune dysfunction, colonizing C. albicans can become an opportunistic pathogen causing superficial or even life-threatening infections. The reasons behind this transition, ...
متن کاملEnergy depletion protects Candida albicans against antimicrobial peptides by rigidifying its cell membrane.
Inhibitors of the energy metabolism, such as sodium azide and valinomycin, render yeast cells completely resistant against the killing action of a number of cationic antimicrobial peptides, including the salivary antimicrobial peptide Histatin 5. In this study the Histatin 5-mediated killing of the opportunistic yeast Candida albicans was used as a model system to comprehensively investigate th...
متن کاملAmphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides.
The present study shows that a number of basic antifungal peptides, including human salivary histatin 5, a designed histatin analog designated dhvar4, and a peptide from frog skin, PGLa, are active against amphotericin B-resistant Candida albicans, Candida krusei, and Aspergillus fumigatus strains and against a fluconazole-resistant Candida glabrata isolate.
متن کاملR03014 1..5
Histatins are a group of antimicrobial peptides, found in the saliva of man and some higher primates, which possess antifungal properties. Histatins bind to a receptor on the fungal cell membrane and enter the cytoplasm where they target the mitochondrion. They induce the non-lytic loss of ATP from actively respiring cells, which can induce cell death. In addition, they have been shown to disru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 63 3 شماره
صفحات -
تاریخ انتشار 2016